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Outline

dLessons from history — an inspiration for this talk

(IThe core of what is done for remap has a very
simple basis

Classes of new methods found in old places.

(JResults of basic accuracy and stability analysis.

Note: I’'m going to look at methods associated with
advection synonymous with remap. One useful
perspective is that these are simply general methods
for hyperbolic conservation (balance) laws.




There was a symposium in June honoring
three CFD greats — Van Leer Roe and Jameson

It was a really interesting few days and it provided some

perspective on the history of our field. / -
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A Method for the Numerica] Calculation of Hydrodynamic Shocks
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JOURNAL OF COMPUTATIONAL PHYSICS 23, 276-299 (1977)

Van Leer introduced the PLM (and PPM) method in his
1977 p a p e r’ and more Towards the Ultimate Conservative Difference Scheme,

V. A New Approach to Numerical Convection

BRAM VAN Legy

Unicersiry Observatory, Leiden, The Netherlands
Rectiveq April 30, 1976; reviseq July 30, 1976

Geometric
Limiters!

Discontinuous
Galerkin
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Reasoning for rethinking advection & remap

(JFor the most part this community has focused upon a
single method (Van Leer’s slope limiter) for remap

JThat method was introduced in that 1977 paper, which
also includes six different methods (of three basic types).

JdWe will look at this paper and the method’s contained
therein for opportunities that we might have missed.
v'The method favored for remap is the “worst” of the six

(1Some of these methods may be much better on modern
computing platforms due to their compact nature.
v'For example, Paul Woodward’s PPB scheme is based

on Van Leer’s scheme VI

v'Scheme VI is not described in detail in the ‘77 paper

P ' Sandi
National



The six schemes introduced in Van Leer’s paper

1 | — The standard slope limited method
v'You know all about it

Il — The evolved slope scheme (Hermite scheme)
v'Described briefly here

Il - Piecewise linear DG (moment method)
v'Focus of lots of recent effort

IV — Piecewise parabolic on three points
v'Basis for the famous PPM scheme
v'Used for ALEGRA these days in the three point form.

1V - Piecewise parabolic with evolving edge values
v'Reintroduced as the PPM-L scheme

VI — Piecewise parabolic DG

v'"Woodward’s PPB scheme / Santia




Its always important to start with a stability analysis to
make sure you’re on the right path.

€ Before taking the time to code a scheme one
should know exactly what to expect from the
method. It also makes a good time to state the
design principles:

1. Have a stable dissipative (entropy condition
satisfying) monotone method as a foundation,

2. Blend it with a stable (upsteam-centered) high-
order method

3. Define the blending via monotonicity or some
other nonlinear stability principle .

4. Test, test, test




High-Resolution Methods

@ Provide an introduction to high-resolution schemes
including some ideas about motivation and implementation

v'These methods have provided an enormous upgrade in
computational performance over the previous generation
of methods.

v'The Dogbert Principle: “Logically all things are created by
a combination of simpler, less capable components” (see

Laney in Computational Gasdynamics) / -




Now we will spend time looking at linear and parabolic
reconstruction procedures.

PILLM PPM

. ! Wiz 1 :
B=1/,2 0=1/2 0=12 0=1.2

@ PLM is the piecewise linear method (Van Leer 1)
€ PPM is the piecewise parabolic method (Van Leer IV)

€ Both methods produce high quality methods

g Sandia
National
Laboratories



How does accuracy change with polynomial order
and approach?

(JWe will move through a series of polynomial descriptions of

different type and order looking at interpolatory accuracy.
35

30::

2.5
:
1.0

05"

-3 -2 -1 1

f(x):2+%sin(i7t(x—l))+tanh(3(x+ ~ @)
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Piecewise Constant is the basis of first-order
Godunov or donor cell

35)

3.0 _—

N4
/[

1.5:—

-3 -2 -1 - 1 2 3

Integrated Error = 0.882 @[%:lgiﬂi??..




Piecewise linear is the basis of second-order
methods, and remap (Scheme ).

15

~—— / Ny

-3 -2 -1 - 1 2

Integrated Error = 0.448




We are going to examine a couple of different
parabolic reconstructions (Scheme IV).

u, = [ p(oYou,~ [ p(o Yo, ~ " P(o)io

1.5

1.0

0.5

_—

=

Integrated Error = 0.427
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A differently constructed parabola is much better
(Scheme V)

Y :.[:l//zzp(e)de;“j—l/z :P(_l/z);u;’ﬂ/z :P(l/z)

350 —_—
- —

/

T T B T R
-3 -2 -1 -

Integrated Error = 0.080




A cubic reconstruction is better still

351 —_—
i —

/

-3 — -2 -1 - 1 2 3

Integrated Error = 0.065 / e




...and a quartic reconstruction improves a bit
more

350 e
- — |

/

-3 -2 -1 - 1 2 3

Integrated Error = 0.058 / ol




Just a note about moment-based methods (i.e.,
discontinuous Galerkin, Scheme Ill) — 1t moment

s, :12]},’?1 1//2 " (xeax

—

-3 -2 -1 - 1 2

Integrated Error = 0.208




Just a note about moment-based methods (i.e.,
discontinuous Galerkin, Scheme VI) — 2" moment

351

30 -

/

c, :80J]: 1//2 " (xdx

—_—

Integrated Error = 0.042




A second-order Godunov method uses piecewise
linear polynomials.

@ The second-order polynomial uses the cell average and a
first-derivative (often called a slope),

P.(6)=P,+PO;P,=U P, =S,

€ Several key requirements are necessary for this to useful:

v'Conservation U;= JPj(O)dH =k

o, dP JU
790 ox
v'Boundedness (monotonicity)- uses limiters and not our

focus here

v'Accuracy S Ax

' Sandia
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Making PLM second-order in time is relatively simple.

& Taking the definition of the time-averaged value from
the integral we can find a second-order time-accurate
value,

| 2c | 2c 1
— | P(6)o= o | (,+PO)MO=P, +(1-C)P,
R V) B V) i

| e ~1/2-C 1

— j P(G)d@z% j (P0+1’10)d9:P0—§(1+C)Pl

o ~1/2 ~1/2

_ AAt| courant Number

¥

C




There’s more, the slope before limiting can be chosen
more broadly.

¥ High-order slopes can improve the performance of the
method,

v'An example would be a fourth-order choice,
. 8(u, U )- (U

S j+1 = j+2

/ 12

_ Ul;—z)

v'Or a sixth-order choice
_ 45(U", - U, )-9(U",, - UL, )+(U"

J+l j+3

_ U'}_3)

S’
! 60

v'Or whatever you like...
v'It can be used in conjunction with the limiter

S, = minmod[Sj 2A_,U2A, U]

g Sandia
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Now we will spend time looking at linear and
parabolic reconstruction procedures.

PILLM PPM

. ! Wiz 1 :
B=1/,2 0=1/2 0=12 0=1.2

¥ PLM is the piecewise linear method (Van Leer 1)
€9 PPM is the piecewise parabolic method (Van Leer IV)
€ Both methods produce high quality methods

/ |
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1

The PPM method first studied by Van Leer in 77

appeared in Colella & Woodward’ s paper.

JOURNAL OF COMPUTATIONAL PHYSICS 54, 174-201 (1984)

The Piecewise Parabolic Method (PPM)
for Gas-Dynamical Simulations

PHILLIP COLELLA

Lawrence Berkeley Laboratory, University of California,
Berkeley, California, 94720

AND
PAauL R. WOODWARD

Lawrence Livermore National Laboratory, University of California,
Livermore, California 94550

Received August 3, 1982; revised August 25, 1983

We present the piecewise parabolic method, a higher-order extension of Godunov’s
method. There are several new features of this method which distinguish it from other
higher-order Godunov-type methods. We use a higher-order spatial interpolation than
previously used, which allows for a steeper representation of discontinuities, particularly
contact discontinuities. We introduce a simpler and more robust algorithm for calculating
the nonlinear wave interactions used to compute fluxes. Finally, we recognize the need for
additional dissipation in any higher-order Godunov method of this type, and introduce it

in such a way so as not to degrade the quality of the results.

/
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National
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A second-order Godunov method uses piecewise
linear polynomials.

€ The second-order polynomial uses the cell average and
the cell edge values,

P.(0)=P,+P6+P0’
b, = U? — %PZ;I)I — U’;’+1/z — U?—l/Z;PZ — 3(U?+1/2 — 2U? + Ul;—l/z)

& Several key requirements are necessary for this to
useful:

v'Conservation U, = JPJ. (0)d6 =P,
v'Accuracy Ujop = U('xjil/2)+0(Axn)

v'Boundedness (monotonicity)-not today.

e Sandia
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Making PPM third-order in time more complex.

& Taking the definition of the time-averaged value from
the integral we can find a second-order time-accurate
value,

~1/2-C ~1/2-C
1

7 Sandia
National
/ Laboratories



There’ s more, the initial edge values need to be
chosen.

@ Colella and Woodward chose fourth-order values*.
U?+1/2 — %(Uj + U?H ) - %(U?—l + UI}+2)
¥ Higher-order edges can improve the performance of the
method, a sixth-order choice

U;+1/2 = %(U3 + U?+1 ) — %(Uj—l + U’;’+2 ) * %(U’;—z + U?+3)
v'Or a fifth-order upwind choice

n ) n 13 n 47 n 27 n 3 n
Uj+1/2 - %Uj—z__ %U T %U_J‘ + @Ujﬂ o 6_QUj+2
v'Or whatever you like, a least third-order or its not

worth it!

* C&W actually use a special fourth-order method

' Sandia
National
Laboratories



Scheme Stability & Truncation Error is
exceptional

@ Using Fourier analysis: &
v'All stable to CFL=1

@ Fourth-order truncation error
v’ Amplitude Az1+(—C2 c-clot+o(o°)

v Ph 24712 °
ase ~ 3 t\pt 6
P=1+(-4-5-5. <)o" +0(6°)

12 12

& Sixth-order truncation error
v Amplitude Az1+(—C2 c gj)e4+0(96)

24 T 12~
v'Phase P=~1+ —%+%_%+%\94+0(96)
& Seventh-order truncation errof’

v Amplitude Az1+(4£8—i+ﬁ_i\94+0 96)

612 24
v'Phase Pz1+(i . e C3+C4)64

120 24 12 12 ' 30



The next couple of schemes are different
PILLM PPM

. Mo W . |
0=1,2 0=1/2 92=_1 2 9:= 1/2
The evolution for w;'s will be the same using the integral (weak)
form 5 - )
—jwdx+<ﬁwd5 =0—->Sw= —E(WM/2 — Wj_l/z)
JFor the PLM now we evolve the “S;'s” using the strong form of the
PDE a(aw awj 0, 00w 3w ds 95 _

=0— =0
ox\ ot oOx

Bt 0X 8x 0x Jdt  dx
For PPM we now evolve the edge wj,,;,’s ”
the PDE 8W ow o

ot ax

using the strong form of
If the method is higher than

second-order this matter a I laborires




Van Leer Il — The slope evolution scheme

This scheme uses the evolution of the slope (gradient) as
an extra equation, otherwise it is a “PLM” method with
better accuracy,

n+l _ yyn n+1/2 n+1/2 n+1/2 _
Ut =u—c(ur -y U=y +1(1-C)s"
n+1 n n n n l n
S - U]+1/2 U] “1/2 _C(Sj _Sj—l) UJ+1/2 _Uj ZSJ'

EIThls defines the simplest Hermitian method.

v'Very similar in flavor to discontinuous Galerkin except

the gradient evolution is differential rather than integral

(JdMore complex schemes can be defined by combining the
data from multiple cells.

(JThese methods are both compact and capable of higher
resolution.




Van Leer Il - Properties

JWith two degrees of freedom, there are two

computational modes to analyze (one is “spurious”)
OTruncation error is nice although there is an issue...
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VL |l Phase Error Plots

JThe phase error show the problems with VLII (at small

10

Courant numbers, at close to mesh scale II.

—
=1
AT L
- _‘ - '

= o ,_—"y

On the same plot Lol (D s
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Van Leer V — Evolved edge values

dThis method has largely been ignored until lately.

(1Several Authors have reinvented Van Leer’s method
without realizing it (looking at references).
v'Popov’s PPM-L scheme

Piecewise parabolic method on a local stencil for magnetized

supersonic turbulence simulation
Sergey D. Ustyugov ?, Mikhail V. Popov?, Alexei G. Kritsuk™*, Michael L. Norman

2 Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, 125047 Moscow, Russia
® University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424, USA

v'Zeng’s hybrid differencing (FV-FD method)
v'Eymann and Roe’s active flux scheme.

It is basically PPM using the edge values as the
unknowns and advanced using a differential form.

This is a very good scheme.



Van Leer V as a discrete method in 1-D

(JEvolve the cell-centers
Ut = — C(Un+1/2 B Un+1/2)
j j '

Jj+1/2 j-1/2

n+1/2 _ pn 11 n n1_1 12
Uj+1/2 _Po,j+(5_EC)PLJ'+P2J(Z_EC+§C )
(JEvolve the edges o) s [
ntl __ qn n n Py~ \1=C)==¢ 1/2 [—)JO
Uj+1/2 - l&+1/2 N CPl,j B CPZ»j (1 B C) " =

@ National
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The truncation error for Van Leer V is exciting!

dThis is a great form and equal or better than standard
PPM A=1+ C+C2 CB+C4)94+0(96)

72736 36 72

P=1+|1 _c¢ ¢ 04)94+0(96)

270 108 ' 108 270

wwwwwwwwwwwwwwwww 0.005 -

—0.0005 [ r
i -0.005
—0.0010 |- F

i -0.010f
—0.0015 -0.015

i —0.020 [
—0.0020 |- N
-0.025f

—0.0025 [ F
g -0.030 -

PPM Az1+(_C+C3_C4
Errors

For P=1+4[-1,c ¢
Comparison




We can derive the next method in the series:
Van Leer VIl (maybe these are VL X, Xl instead)

dThis might be viewed as a successor to “PPM” using a
symmetric fourth-order polynomial.

dThe polynomial is determined by the cell’s average, its
neighbors, and the edge values on the central cell.

P.(0)=P,+PO+P0° +PH" +P,0*
1 1/2-C

-C

1/2

(JdWe can use fifth, sixth or seventh-order edge values to
determine the edges.

dSimilar to a method introduced by Xiang & Shu

P(O)dezﬁjH/Z :Po+P1(%_%)+P2(%_%+CTZ)+P3(%—%+C—2—C—3)+P4(L—%+C—2—C—3—C—4)

2 4




Van Leer VIl has very nice properties.

It is basically like a better version of PPM (6" order edges).

Uia :J ]:1//22}, (9)‘?;“}' - J ,il//zzp (O)de;um - ,-T//ZZP (e)de;“j—l/z =P (_1/ 2);“j+1/2 =P (1/ 2)

p!

<7

720

Az1+L(—zc2 +3C3+C*—-3C° +C6)96 +0(98)

Pz1+T180(—12+28C+7CZ—35C3 +7C*+7C° —266)96 +0(6’8 e
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Moving to multiple dimensions and complex
meshes requires comment

(JRunge-Kutta method of lines methods are simple for
complex integrators.
v'A downside is that these R-K methods have strict CFL
stability limits.
v'These can alleviated to some degree by including more
characteristic information.

(JLeast Squares principles can be used to derive stencils
e.g., over-determined systems

P(x,y):U+Ux(x—x0)+Uy(y—y0)+ny(x—x0)(y—yo)

% +UXX(X—XO)2+Uyy(y—y0)2

National
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Conclusions

(JThe basis of most remap is the simpliest and many
the worst scheme from Van Leer’s classic 1977 paper

(dMany extensions in resolution are possible for this
scheme and its closely related PPM scheme

JThe four remaining schemes have a great deal of
promise:

v'Two are basically discontinuous Galerkin
v'One is a Hermite scheme

v'The other is a hybrid finite volume-finite difference
method

v'These methods are accurate and compact.

‘
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Thoughts about high-order methods

JAccuracy per unit run time
v"We care about discontinuous solutions with shocks or

contacts determining the accuracy, ymin(e)
v'Think “high-resolution” Error=Ch”" - C—
v'Define what accuracy we care about (symmetry, P
energy,...)

v'Test and quantify the results

(dMeasure the work, memory, and accuracy
v'Ullrich’s work on methods for climate modeling is
useful — compare resolution, memory & operations

dThink in terms of 3-D time dependent problems
v'A single mesh refinement costs a factor of 16 more

v'Adaptive meshes reduce this to about 8



